Utilisation du programme Siemens NX 18

La bielle

Basé sur un tutoriel Catia tutorial écrit par Loïc Stefanski.

A la fin de ce tutorial vous obtiendrez l'objet ci-dessous :

1

1 – Introduction.

Lancez NX 18 et ouvrez un nouveau fichier de type *Model*.

- Dans la barre d'outils, cliquez sur *New*.
- Dans la Filter list, sélectionnez *Model*.
- Entrez comme nom de fichier le nom *rod* et sélectionner un dossier d'enregistrement.
- Cliquez *OK* pour confirmer.

2 – Création du cylindre.

En premier lieu, il est nécessaire de tracer un profil cylindrique dans le sketcher.

- Cliquez sur le bouton Sketch. Sketch •
- Créez un nouveau Sketch et sélectionnez le plan XY . dans la boîte de dialogue Create Sketch.
- Tracer un cercle de rayon arbitraire centré sur l'origine des axes.
- Double-cliquez sur la cote affichée et définissez le rayon à 27 mm.
- Cliquez sur le bouton ^{Finish} pour revenir dans le mode 3D.

Nous allons maintenant extruder le sketch précédent.

- Cliquez sur le bouton Extrude Extrude . •
- Dans la boîte de dialogue Extrude, fixez la direction d'extrusion suivant l'axe ZC.
- Sous l'onglet Limits, entrez comme start • distance 9 mm et comme end distance 0 mm.
- Sous l'onglet Offset, choisissez l'option Two-Sided offset, une Start value de 0 mm et une *End value* de 6 mm.
- Cliquez OK pour confirmer.
- Avant de continuer dans ce qui suit, il • faudra désactiver l'option Continuous Auto-Dimensioning sous le bouton More localisé dans la barre d'outils (uniquement disponible en mode Sketcher).

🔅 Extrude

υx

🗸 Select Curve (1)		*
		d
Direction		^
 Specify Vector 	× ↓ ^{zc} †	•
Limits		^
Start	📦 Value	•
Distance	9 mm	•
End	🝿 Value	•
Distance	0 mm	•
Open Profile Smart Vol	lume	
Boolean		^
Boolean (None)	脅 Inferred	•
Draft		×
Offset		^
Offset	Two-Sided	•
Start	0 mm	•
End	6 mm	•
Settings		×
Preview		v
	•	

Written by C. Leblanc, MàJ by M. Purnode

2

3 – Création du petit cylindre.

La procédure est la même que la précédente.

- Ouvrez le mode *Sketcher* et sélectionnez le plan XY.
- Tracez un cercle près du premier, tel que son centre se trouve sur l'axe horizontal. Imposez cette contrainte en utilisant la contrainte géométrique *Point on Curve* (localisée sous le bouton *More* de la barre d'outils).
- Cliquez sur le bouton *Rapid*

Dimension^{Dimension}. Dans la boîte de dialogue *Rapid Dimension* sélectionnez les centres des deux cercles et imposez une distance de **150 mm**.

- Sous le bouton *Rapid Dimension*, sélectionnez *Radial Dimension*.
- Imposez pour le cercle un rayon de **12 mm**.

- Sortez du mode *Sketcher*^{Finish}.
- Enfin, créez une extrusion de **10 mm** avec une coquille externe épaisse de **4 mm** pour le petit cercle.

Extrude		ა x
Section		^
🖋 Select Curve (1)		
Direction		^
🖋 Specify Vector	× 🚛	zc
Limits		^
Start	🝿 Value	•
Distance	10 m	nm 🔻
End	🝿 Value	•
Distance	0 m	nm 🔻
Open Profile Smart	/olume	
Boolean		^
Boolean (None)	ලි Inferred	•
Draft		v
Offset		^
Offset	Two-Sided	•
Start	0 m	ım 🔻
End	4 m	nm 🔻
Settings		v
Preview		v
	•	
< OK >	Apply C	Cancel

_{ง x}

Z,Y

^

Custom

5 – Création de la bielle.

Grâce à sa symétrie, il est possible de ne tracer qu'une partie du corps.

- Entrez dans le *Sketch* mode dans le plan XY.
- Cliquez sur le bouton *Profile* ⁽¹⁾ et créez un profil similaire à celui illustré dans la figure de droite. Ce profil est constitué de 5 segments de droites, partant du point A et arrivant au point B. Chacun aura une construction différente.
- Créez ensuite un arc de cercle reliant le point A au point B en utilisant l'outil *Arc* of *Profile*.
- Imposez une contrainte tangentielle au point B.
- La courbe devrait être maintenant fermée.
- Quittez le mode *Sketch* et extrudez le nouveau sketch de **7 mm**.
- Cachez ensuite le Datum Plane et la grille.

• Dans le mode *Sketch* sélectionnez la face supérieure. Le sketch devrait se faire dans celle-ci.

Nous allons tracer des courbes de décalage à partir du contour tracé ci-dessus et connecter celles-ci.

- Agrandissez la boîte d'outils *Direct Sketch* en cliquant sur le petit triangle.
- Dans le menu déroulant *Curve Rule* (localisé sous le bouton *Extrude*), sélectionnez *Single Curve*. Cette option permet de sélectionner les courbes une par une.

🔇 🧃 Single Curve	▼ < > / / 2 4 ~ + 0 0		
	Curve Rule Defines behavior for how curves are selected and remembered.		

▼ souris.prt 物场量·数

¦po S≩ ⊑

₩ More Curve

Tracer les courbes de décalage.

- Dans la boîte de dialogue *Offset Curve*, sélectionnez le segment supérieur du dernier sketch et imposez une distance de décalage **8 mm**.
- Sélectionnez ensuite le segment de gauche et imposez une distance de **15 mm**.
- Sélectionnez le segment inférieur et imposez une distance de **0 mm**.
- Sélectionnez l'arc et le segment qui lui est connecté au point B et imposez une distance de **3 mm**.
- Sélectionnez le segment le plus à droite et imposez une distance de **2 mm**.
- Attention : tracez les courbes décalées dans la bonne direction (vers l'intérieur). Si la direction est incorrecte, cliquez sur

la double flèche bleue ou sur pour corriger.

• Vous devriez finalement obtenir une construction analogue à celle présentée ci-dessous.

Connexion des courbes décalées.

Pour le moment, les courbes décalées ne sont pas connectées. Connectez-les en utilisant les

outils Quick Extend \checkmark et Quick Trim \checkmark qui sont localisés dans la boîte d'outils Direct Sketch. Le quick extend allongera une ligne jusqu'à rencontrer une autre courbe. Le quick trim effacera une partie de droite trop longue

- Utilisez les deux outils ci-dessus pour obtenir la courbe bleue de la figure.
- Il est possible que des surcontraintes apparaissent. Supprimez-les en faisant un clic droit sur le sigle rouge et en choisissant une contrainte à supprimer

Création de la poche.

Nous allons utilisez une opération booléenne associée à une extrusion pour créer une poche.

- Quittez le mode *Sketch*.
- Cliquez sur le bouton *Extrude* et sélectionnez le sketch contenant les courbes décalées connectées.
- Dans la boîte de dialogue *Extrude*, sélectionnez l'axe *ZC* comme axe d'extrusion. Fixez la distance de départ (*Start*) à 0 mm et la distance d'arrivée (*End*) à -4 mm.
- Dans l'onglet *Boolean*, fixez le champ *Boolean* à *Subtract*.
- Cliquez *OK* pour valider.

|--|

Extrude	υx
Section	^
🗸 Select Curve (6)	
Direction	^
 Specify Vector 	X J. ZC
Limits	^
Start	🗑 Value 🛛 👻
Distance	0 mm 👻
End	🗑 Value 👻
Distance	-4 mm 🔻
Open Profile Smart Vo	blume
Boolean	^
Boolean	🗗 Subtract 👻
🞸 Select Body (1)	9
< OK >	Apply Cancel

Le reste de la pièce va être maintenant créé par symétrie.

- Cliquez sur le bouton Menu, puis le bouton Insert->Associate
 Copy->Mirror Geometry.
 Mirror Geometry...
- Sélectionnez la partie connectant les deux cylindres creux et sélectionnez comme *Mirror Plane* le plan XZ.
- Cliquez *OK* dans la boîte de dialogue qui apparaît.
- Finalement, unissez l'objet avec sa copie symétrique en utilisant le bouton Unite. Unite •

6 – Union des deux cylindres avec la partie connectante.

Nous allons utiliser l'outil *Trim Body* afin de découper certaines parties des pièces et en garder d'autres.

• Cliquez sur le bouton *Menu*, puis le bouton

Insert->Trim->Trim Body.

- Premier découpage : sélectionnez la pièce connectante comme cible (*Target*) et la face externe du grand cylindre comme *Tool Option*. Faite attention à découper correctement la partie connectante. Si nécessaire, changez la direction de découpage en cliquant sur la double flèche bleue.
- Note 1: Dans le menu déroulant *Face Rule*, faites attention à sélectionner l'option *Single*

Face. 🌑 📦 Single Face 🔹

- Note 2 : Vous pouvez changer le sens de la découpe en cliquant sur
- Validez avec *OK* si la prévisualisation correspond à l'une des figures ci-contre.
- Second découpage : refaites les opérations décrites ci-dessus en sélectionnant cette fois la face externe du petit cylindre comme *Tool Option*.

	File	Home				
		h	□.			
	Sketch	2	\bigcirc ·			
Direct Sketch						
	📆 <u>M</u> enu	I -	No Selec			

6 – Union des deux cylindres avec la partie connectante.

 Finalement, unissez les deux cylindres avec la partie connectante au moyen du bouton Unite.

7 – Création des raccords.

Similairement à une véritable pièce mécanique, il est plus réaliste d'introduire des raccords.

• Cliquez sur le bouton *Edge*

Blend Blend .

- Sélectionnez-les arrêtes deux par deux (voir figures).
- Choisissez un rayon de **5 mm**.
- Validez.

9

